Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Simulation of a gamma-ray imaging technique using detector response patterns

Kitayama, Yoshiharu; Nogami, Mitsuhiro*; Hitomi, Keitaro*

Japanese Journal of Applied Physics, 63(3), p.032005_1 - 032005_6, 2024/03

 Times Cited Count:0 Percentile:0.01(Physics, Applied)

We introduce a novel gamma-ray imaging technique that uses detector response patterns. This method employs multiple shielding cubes randomly positioned in a three-dimensional configuration. Within the volume defined by these cubes, a unique gamma-ray flux pattern is formed based on the incidence direction of the gamma rays. This pattern can be measured using the responses of several scintillator cubes. By pre-measuring the detector response pattern and incidence direction of the gamma rays, the incidence direction can be estimated using an unfolding technique. Simulations were performed using a $$^{137}$$Cs point source. Our results show that a 10 MBq $$^{137}$$Cs source, located 3 m away from the imager, can be imaged with an angular resolution close to 10$$^{circ}$$. These findings suggest that our new method is comparable to existing gamma-ray imaging techniques. Potential applications of this imaging method include nuclear power plant decommissioning, nuclear medicine, security, and astronomy.

Journal Articles

Gamma-ray imaging using three-dimensional shadow images created by coded solid

Kitayama, Yoshiharu; Nogami, Mitsuhiro*; Hitomi, Keitaro*

KEK Proceedings 2022-3, p.46 - 53, 2023/01

The position of a streetlight can be predicted from the direction and shape of one's shadow projected on the street at night by the light of the streetlight. The application of this idea to gamma-ray imagers is known as coded aperture. In this study, we proposed the Coded Cube Camera - POrtable (C3PO), which has a three-dimensional shielding and scintillator crystal arrangement, and is composed of lead, scintillator, and depletion cubes randomly arranged in a 3$$times$$3$$times$$3 Rurik's cube shape, with each. The output of each scintillator produces a three-dimensional shadow pattern, which is returned to the source direction distribution by unfolding. In this study, we investigated the characteristics and feasibility of the system by simulation using Geant 4.

2 (Records 1-2 displayed on this page)
  • 1